Distributed Monitoring of Power System Oscillations Using Multiblock Principal Component Analysis and Higher-order Singular Value Decomposition

نویسندگان

چکیده

The primary goal in the analysis of hierarchical distributed monitoring and control architectures is to study spatiotemporal patterns interactions between areas or subsystems. In this paper, a novel conceptual framework for power system oscillations using multi-block principal component (MB-PCA) higher-order singular value decomposition (HOSVD) proposed understand, characterize, visualize global behavior system. can be used evaluate influence given area utility on oscillatory behavior, uncover low-dimensional structures from high-dimensional data, analyze effects heterogeneous data modal characteristics interpretation metrics are then investigated examine relationships dynamic participation individual blocks Practical Application these techniques demonstrated by case studies two systems: 14-machine test 5449-bus 635-generator equivalent model large

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Component Analysis using Singular Value Decomposition of Microarray Data

A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. Principal component analysis(PCA) has been widely used in multivariate data analysis to reduce the dimensionality of the data in order to simplify subsequent analysis and allow for summarization of the data in a parsimonious manner. PCA, which can be implemented...

متن کامل

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

l=1 σlulv T l (1) ∀ l σl ∈ R, σl ≥ 0 (2) ∀ l, l 〈ul, ul′〉 = 〈vl, vl′〉 = δ(l, l) (3) To prove this consider the matrix AA ∈ R. Set ul to be the l’th eigenvector of AA . By definition we have that AAul = λlul. Since AA T is positive semidefinite we have λl ≥ 0. Since AA is symmetric we have that ∀ l, l 〈ul, ul′〉 = δ(l, l). Set σl = √ λl and vl = 1 σl Aul. Now we can compute the following: 〈vl, vl...

متن کامل

Batch Process Monitoring Using Multiblock Multiway Principal Component Analysis

Batch process monitoring to detect the existence and magnitude of changes that cause a deviation from the normal operation has gained considerable attention in the last decade. There are some batch processes that occur as a single step, whereas many others include multiple phases due to operational or phenomenological regimes or multiple stages where different processing units are employed. Hav...

متن کامل

Randomized algorithms for distributed computation of principal component analysis and singular value decomposition

As illustrated via numerical experiments with an implementation in Spark (the popular platform for distributed computation), randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a full principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank approximation (in t...

متن کامل

Fusion of Image Using Higher Order Singular Value Decomposition

Image processing is a method to convert an image into digital form and perform some operations on it, in order to get an enhanced image or to extract some useful information from it. It is a type of signal dispensation in which input is image, like video frame or photograph and output may be image or characteristics associated with that image. Usually Image processing system includes treating i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of modern power systems and clean energy

سال: 2022

ISSN: ['2196-5420', '2196-5625']

DOI: https://doi.org/10.35833/mpce.2021.000534